Analysis of the inhibition of MyoD activity by ITF-2B and full-length E12/E47.

نویسندگان

  • H Petropoulos
  • I S Skerjanc
چکیده

MyoD heterodimerizes with E type factors (E12/E47 and ITF-2A/ITF-2B) and binds E box sequences within promoters of muscle-specific genes. In transient transfection assays, MyoD activates transcription in the presence of ITF-2A but not ITF-2B, which contains a 182-amino acid N-terminal extension. The first 83 amino acids of the inhibitory N terminus of ITF-2B show high sequence homology to the N terminus of full-length E12/E47. Previous studies that showed activation of MyoD by E12 used an artificially N-terminally truncated form. Here we show that the full-length form of E12 inhibits MyoD function. A conserved alpha-helix motif, capable of interacting with the transcriptional machinery, was not essential for inhibition. Furthermore, the fusion of N-terminal ITF-2B sequences or non-inhibiting ITF-2A sequences to truncated E12 was sufficient in converting the activator into an inhibitor. Overexpression of ITF-2B did not inhibit C2C12 myogenesis or affect levels of endogenous muscle gene expression, consistent with the finding that inhibitory E type proteins are present in muscle. Furthermore, we found that MyoD co-transfected with either ITF-2B or ITF-2A converted fibroblasts into myoblasts with the same frequency. Our findings suggest that the ability of E type proteins to inhibit MyoD activity is dependent on the context of the E box.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The MyoD-inducible p204 protein overcomes the inhibition of myoblast differentiation by Id proteins.

The murine p204 protein level is highest in heart and skeletal muscle. During the fusion of cultured myoblasts to myotubes, the p204 level increases due to transcription dependent on the muscle-specific MyoD protein, and p204 is phosphorylated and translocated from the nucleus to the cytoplasm. p204 overexpression accelerates myoblast fusion in differentiation medium and triggers this process e...

متن کامل

Calcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors.

The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to C...

متن کامل

MyoD forms micelles which can dissociate to form heterodimers with E 47 : Implications of micellization on function ( analytical ultracentrifugation / helix - loop - helix proteins / transcriptional regulation )

MyoD is a member of a family of DNAbinding transcription factors that contain a helix-loop-helix (HLH) region involved in protein-protein interactions. In addition to self-association and DNA binding, MyoD associates with a number of other HLH-containing proteins, thereby modulating the strength and specificity of its DNA binding. Here, we examine the interactions of full-length MyoD with itsel...

متن کامل

Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II.

The insulin-like growth factors (IGFs) play key roles in muscle development, maintenance, and repair, but their mechanisms of action are incompletely defined. We previously identified an autocrine pathway involving production of IGF-II and activation of the IGF-I receptor, phosphatidylinositol 3-kinase, and Akt in myoblast differentiation induced by MyoD in 10T1/2 mesenchymal stem cells and fou...

متن کامل

E2A basic-helix-loop-helix transcription factors are negatively regulated by serum growth factors and by the Id3 protein.

Id3, a member of the Id multigene family of dominant negative helix-loop-helix transcription factors, is induced sharply in murine fibroblasts by serum growth factors. To identify relevant targets of Id3 activity, the yeast two-hybrid system was used to identify proteins that dimerize with Id3. Four murine cDNAs were identified in the screen, all of which encode helix-loop-helix proteins: E12, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 33  شماره 

صفحات  -

تاریخ انتشار 2000